
Comprehending Energy Behaviors of Java I/O APIs
Gilson Rocha

Federal University of Pará
Belém, Pará

grsilva@ufpa.br

Fernando Castor
Federal University of Pernambuco

Recife, Pernambuco
castor@cin.ufpe.br

Gustavo Pinto
Federal University of Pará

Belém, Pará
gpinto@ufpa.br

Abstract—Background: APIs that implement I/O operations
are the building blocks of many well-known, non-trivial software
systems. These APIs are used for a great variety of programming
tasks, from simple file management operations, to database
communications and implementation of network protocols. Aims:
Despite their ubiquity, there are few studies that focus on
comprehending their energy behaviors in order to aid developers
interested in building energy-conscious software systems. The
goal of this work is two-fold. We first aim to characterize
the landscape of the Java I/O programming APIs. After better
comprehending their energy variations, our second goal is to
refactor software systems that use energy inefficient I/O APIs to
their efficient counterparts. Method: To achieve the first goal, we
instrumented 22 Java micro-benchmarks that perform I/O oper-
ations. To achieve our second goal, we extensively experimented
with three benchmarks already optimized for performance and
five macro-benchmarks widely used in both software development
practice and in software engineering optimization research.
Results: Among the results, we found that the energy behavior of
Java I/O APIs is diverse. In particular, popular I/O APIs are not
always the most energy efficient ones. Moreover, we were able to
create 22 refactored versions of the studied benchmarks, eight of
which were more energy efficient than the original version. The
(statistically significant) energy savings of the refactored versions
varied from 0.87% up to 17.19%. More importantly, these energy
savings stem from very simple refactorings (often touching less
than five lines of code). Conclusions: Our work indicates that
there is ample room for studies targeting energy optimization of
Java I/O APIs.

I. INTRODUCTION

According to a recent survey with smartphone users, longer
battery life is the most desired smartphone feature [33]. This
concern does not pertain only to battery-drive devices. Another
survey evidenced that 24% of software engineers who develop
applications for traditional PCs frequently have requirements
about energy usage [22]. It is thus not a coincidence that, in
recent years, researchers worldwide turned their attention to
better understand the root causes that could lead to energy
leaks, hotspots, or even bugs and the eventual solutions to
mitigate these problems [31], [37], [30], [6], [29]. The software
engineering research, in particular, has seen flourishing empir-
ical findings [24], [32], [22], [35], process, techniques [4], [2],
[17], and tools [20], [16], [28] that aim at better supporting
software engineers to understand and overcome software en-
ergy consumption issues. Unfortunately, due to the intrinsic
complexity of any high-level programming language, these

studies are far from covering the whole spectrum of program-
ming language design, pragmatics, and resource usage from
an energy efficiency perspective.

More specifically, the energy consumption of APIs that
perform I/O programming is far from being well studied.
This is particularly unfortunate due to the widespread use
of such APIs, which are not only the building blocks of
several low-level communication channels such as sockets or
database drivers, but also the bedrock of high-level software
applications that have anything to do with data storage or
transmission. Still, these classes are used intensively by infras-
tructure software, such as servers and communication libraries.

More interesting to this research is the fact that these I/O
APIs might have a relevant impact on energy consumption. As
an example, as indicated in a recent related work [21], about
10% of the energy consumption of mobile applications is spent
in I/O operations. In another study, a 4.29% energy saving in
a server computer was observed when refactoring code that
deals with I/O operations [20]. In spite of its importance,
the few studies that approaches this topic do not present a
comprehensive energy characterization of I/O APIs. Therefore,
many relevant questions are still open, such as: do different
Java I/O API implementations have different energy behavior?
Do the way that we use these APIs (e.g., using for reading
or writing operations) have any influence on their energy
consumption? Is there any chance to save energy consumption
by alternating between the different Java I/O APIs?

This work aims to reduce this knowledge gap by drawing
an extensive characterization of energy behaviors of Java I/O
APIs. Through a broad experimental exploration of 22 Java
I/O APIs, we elucidate many interesting energy characteristics
of these programming constructs that were so far unknown.
For instance, while the Files class presents the least energy
consumption, the FileInputStream class performs three times
worse than Files. Moreover, we perceived that refactoring
could play an important role in improving the energy con-
sumption of software systems that leverage Java I/O APIs.
Through very minor changes, we were able to improve the
energy consumption of a non-trivial software system by up
to 17%. This finding indicates that there is an opportunity to
reduce the energy consumption of existing software systems
with reasonably little effort from the developers.

The main contributions of this study are the following:
• It describes an empirical study, the first of its kind to the

best of our knowledge, that correlates energy behaviors978-1-7281-2968-6/19/$31.00 c©2019 IEEE

Gustavo Pinto

of Java I/O APIs.
• It conducts an extensive experimental exploration that

involves a combination of factors, ranging from Java I/O
APIs, data sizes, Java I/O API usage characteristics. The
exploration draws a landscape that involves thousands of
distinct points in the experiment space.

• It performs the experiments using three different cat-
egory of benchmarks: micro-benchmarks, optimized-
benchmarks, and macro-benchmarks. The employed opti-
mized and macro benchmarks are known in the literature
and far from trivial.

II. RESEARCH METHOD

A. Research Questions

This work is motivated by the following research questions:
• RQ1: What is the energy consumption behavior of the

Java I/O APIs?
• RQ2: Can we improve the energy consumption of the

optimized and the macro-benchmarks by refactoring their
use of Java I/O APIs?

Our first research question is exploratory in nature. To
provide answers to RQ1, we instrumented 22 Java I/O APIs.
To perform this instrumentation process, we employed “micro-
bencharks”, that is, benchmarks that perform a single task
(e.g., reading from a file in the disk). These benchmarks were
instrumented following rigorous measurements approaches, as
discussed in Section II-B.

For RQ2 we performed refactorings in the code base of
the benchmarks to understand whether the proposed changes
could positively impact their energy consumption. We employ
what we consider to be three types of benchmarks: (i) micro-
benchmarks are small programs (around 200 LoC); (ii) opti-
mized benchmarks are similar to the micro-benchmarks in size,
but are optimized for performance; and (iii) macro-benchmarks
are full-fledged working software systems (comprising thou-
sands of lines of code). Some of these optimized and macro-
benchmarks were also the subject of several energy-related
studies (e.g., [1], [18], [24], [31]). To avoid solutions that could
be error-prone or omission-prone, we focused on refactorings
that do not require extensive code changes (e.g., changes
between Java I/O APIs that extend the same interface). These
refactorings are very simple, with little risk of modifying
program behavior (a threat to any refactoring approach [9])
and can be easily automated by a general-purpose tool.

B. Micro-, Optimized, and Macro-Benchmarks

In this section we provide more details about the micro-
benchmarks (Section II-B1), the optimized benchmarks (Sec-
tion II-B2), the macro-benchmarks (Section II-B3) employed
in this study.

1) Micro-Benchmarks: The Java programming
language is particularly rich when it comes to
APIs that perform I/O operations. More specifically,
these APIs can be grouped into four abstract
classes: java.io.OutputStream, java.io.InputStream,
java.io.Reader, and java.io.Writer. In particular, the

classes InputStream and OutputStream implement I/O
operations over a byte array, whereas the classes Reader and
Writer deal with chars. Table I summarizes the studied Java
I/O APIs. The data available at column “# in OSS projects”
was gathered from the BOA [10] infrastructure.

These classes have been introduced in the Java program-
ming language in its very early versions. Classes that extend
java.io.Writer and java.io.Reader were introduced in the
version 1.1 of the language, whereas the other ones are
available since Java 1.0. Each one of the studied Java I/O
APIs implements at least one method for input operations or at
least one method for output operations. Although Table I lists
19 Java I/O APIs that can be found at the java.io package,
we are not covering all existing Java I/O APIs. Our study
covers all classes that extends the four abstract classes, with
the exception of:

• DataOutputStream: This class has its readLines()

method deprecated;
• LineNumberInputStream and

StringBufferInputStream: These two classes are
deprecated;

• ObjectOutputStream: This class focused on Java objects,
limiting its usage to rather specific scenarios;

• PipedOutputStream and PipedInputStream: These two
classes should be used together, limiting their usage to
rather specific scenarios. More concretely, the former
creates data that the latter consumes;

• PipedReader and PipedWriter: These classes fol-
low the same design of the PipedOutputStream and
PipedInputStream classes;

• SequenceInputStream: This class reads two inputs
sequentially, limiting its usage to rather specific
scenarios. More precisely, as its constructor is
defined (i.e., SequenceInputStream(InputStream

s1, InputStream s2)), it starts with s1 and, when it is
done, it moves to s2.

For each one of these classes, we benchmarked only
one method. The remaining classes from the java.io pack-
age are exceptions (e.g., IOException) or utility (e.g.,
Console) classes. In addition to the classes presented at
Table I, we also included three classes: (1) RandomAccessFile
(RAF), introduced in Java 1.0, (2) java.util.Scanner

(SCN), introduced in Java 1.5, and (3) java.nio.file.Files
(FI), introduced in Java 1.7. These three classes do not
extend from the aforementioned abstract classes; there-
fore, they implement I/O operations slightly differently
from the other studied Java I/O APIs. For instance,
the Files class implements three methods that perform
input operations (List<String> readAllLines(Path path),
Stream<String> lines(Path path), and BufferedReader

newBufferedReader(Path path)). We benchmarked these
three methods. Still, the Scanner class relies on two methods
(String nextLine() and boolean hasNext()) that should be
used to perform input operations. These 22 classes comprise
our corpus of Java I/O APIs.

TABLE I: Characteristics of the studied Java I/O APIs.

Class Acronym Method instrumented Extends from Available from # in OSS projects
BufferedWriter BW void write(String str) java.io.Writer JDK 1.1 4,705
FileWriter FW void write(String str) java.io.Writer JDK 1.1 3,353
StringWriter SW void write(String str) java.io.Writer JDK 1.1 2,026
PrintWriter PW void write(String str) java.io.Writer JDK 1.1 10,501
CharArrayWriter CAW void write(String str) java.io.Writer JDK 1.1 572
BufferedReader BR int read() java.io.Reader JDK 1.1 12,441
LineNumberReader LNR int read() java.io.Reader JDK 1.1 897
CharArrayReader CAR int read() java.io.Reader JDK 1.1 187
PushbackReader PBR int read() java.io.Reader JDK 1.1 779
FileReader FR int read() java.io.Reader JDK 1.1 1,695
StringReader SR int read() java.io.Reader JDK 1.1 536
FileOutputStream FOS void write(byte[] b) java.io.OutputStream JDK 1.0 3,541
ByteArrayOutputStream BAOS void write(byte[] b) java.io.OutputStream JDK 1.0 6,946
BufferedOutputStream BOS void write(byte[] b) java.io.OutputStream JDK 1.0 1,753
PrintStream PST void print(String str) java.io.OutputStream JDK 1.0 8,424
FileInputStream FIS int read() java.io.InputStream JDK 1.0 2,823
BufferedInputStream BIS int read() java.io.InputStream JDK 1.0 1,832
PushbackInputStream PBIS int read() java.io.InputStream JDK 1.0 688
ByteArrayInputStream BAIS int read() java.io.InputStream JDK 1.0 1,532

For each one of the studied Java I/O APIs, we implemented
the following task: each Java I/O API that implements input
operations reads a 20Mb HTML file. Similarly, the classes that
implement output operations write into disk 20Mb of data in
an HTML file.

2) Optimized Benchmarks: In addition to the micro-
benchmarks, we also studied three benchmarks from the
Computer Language Benchmark Game1. Although small (they
have about 200 lines of code), the optimized benchmarks are
intrinsically different from the micro-benchmarks due to at
least two important reasons: (1) they perform sophisticated
programming tasks and (2) they are designed by experts to be
optimized for performance. As a consequence, these bench-
marks have been employed in several optimization studies tar-
geting programming languages [18] and virtual machines [1].
Among the benchmarks available at the Computer Language
Benchmark Game repository, only three of them perform I/O
operations. They are:

FASTA:2 This benchmark groups DNA, RNA, or proteins
structures. This benchmark uses the method write(byte[] b)

from the OutputStream class to write sequences of characters
such as “GGGATACCGTACA” in the output stream. This
benchmark performs only output operations and has 329 lines
of code.

K-NUCLEOTIDE:3 This benchmark takes a DNA sequence,
and counts the occurrences and their frequencies of nucleotide
patterns. It receives as input the FASTA output. It uses the
method String readLine() from the BufferedReader class
to read the output file generated by the FASTA benchmark.
This benchmark performs only input operations and has 205
lines of code.

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/
2https://benchmarksgame-team.pages.debian.net/benchmarksgame/

program/fasta-java-5.html
3https://benchmarksgame-team.pages.debian.net/benchmarksgame/

program/knucleotide-java-1.html

REVERSE-COMPLEMENT:4 It reads the output of the FASTA
benchmark and creates the reverse complement of each se-
quence, that is a new DNA sequence that connects with the
old one. In parallel, it saves the reverse complements in
text files. It reads the FASTA output using the method int

read(byte b[], int off, int len) from the InputStream

class. To write the output, it uses the method void write(byte

b[], int off, int len) from the OutputStream class. This
benchmark performs input and output operations and has 292
lines of code.

3) Macro-Benchmarks: Finally, we also explored macro-
benchmarks. These benchmarks are real, working software
systems. We chose five macro-benchmarks: three of them from
the DaCapo benchmarks suite [3], and two of them from
open-source repositories. The DaCapo macro-benchmarks are
the following: XALAN, FOP, and BATIK. The open source
projects are the following: COMMONS-IO and PGJDBC. The
DaCapo benchmarks have multiple workload configurations
available, e.g., small, medium, and large. These workloads
vary in terms of the input size. For the other benchmarks,
we created the workloads ourselves. More details about the
macro-benchmarks is provided next.

XALAN:5 This is an XSLT processor that translates XML
documents into HTML files, or other types of documents. The
benchmark processes 17 XML files, which are small and have
a maximum size of 40 KB. The benchmark was built to use
different workloads; The workloads used were: small (repeats
the process 10 times; for a total 170 XML files processed;
on average, the output file has 320 KB), default (repeats the
process 100 times; for a total 1,700 XML files processed; on
average, the output file has 3.1 MB), and large (repeats the
process 1,000 times; 17,000 XML files processed. On average,
each output file has 30 MB). This benchmark has 171,908 lines

4https://benchmarksgame-team.pages.debian.net/benchmarksgame/
program/revcomp-java-8.html

5https://xml.apache.org/xalan-j/

of code. According to the Maven Repository, 1,030 artifacts
use this benchmark6.

FOP:7 This benchmark converts an XSL file, which has
content and formatting information, to a PDF format. The
workloads used were: small (an XSL file with 66 KB, which
produces an output PDF file with 28.6 KB), default (an XSL
file with 360 KB, which produces an output PDF file with 866
KB), and large (an XSL file with 480 KB, which produces an
output PDF file with 1.8 MB). It has 95,799 lines of code.
According to the Maven Repository, 145 artifacts use this
benchmark8.

BATIK:9 This benchmark is a toolkit for applications that
want to use images in the Scalable Vector Graphics (SVG)
format. The implemented benchmark renders images in a PNG
format from SVG entries. Three workloads were used: small
(processes one SVG file, and outputs one PNG file), default
(processes three SVG files, and outputs three PNG files), large
(processes seven SVG files, and outputs seven PNG files). It
has 170,121 lines of code. According to the Maven Repository,
73 artifacts use this benchmark10.

COMMONS-IO:11 This macro-benchmark is an Apache
utility library used to provide high-level I/O abstrac-
tions to third party software applications. In particular,
this macro-benchmark employs the method List<String>

readLines(File, Charset) of the FileUtils class, which
uses the BufferedReader class behind the scenes. In our work-
load, this macro-benchmark reads sequentially each line of a
250MB file with more than 4 million lines. This benchmark
has 55,580 lines of code and is a widely used by open source
projects. According to the Maven Repository, 16,261 artifacts
use this benchmark12.

PGJDBC:13 This macro-benchmark is the official Post-
greSQL driver for the Java programming language. This
macro-benchmark communicates with a database using the
BufferedOutputStream class, with a fixed buffer size (8KB).
The benchmark performs a bulk operation: 10,240 lines are
inserted sequentially in a single table with three columns
(schema: a int4, b varchar (100), and c int4). The inserted
string contains random numeric values, ranging from 0 to
10,239. Since this is a bulk operation, only one commit is
made after the transaction. To avoid network overhead, both
client code (the one that performs the insert operations) and
server code (the one that stores the database) are in the same
machine. This macro-benchmark has 58,044 lines of code.
According to the Maven Repository, 22 artifacts use this
benchmark14.

6https://mvnrepository.com/artifact/xalan/xalan
7https://xmlgraphics.apache.org/fop/
8https://mvnrepository.com/artifact/org.apache.xmlgraphics/fop
9https://xmlgraphics.apache.org/batik/
10https://mvnrepository.com/artifact/org.apache.xmlgraphics/batik-util
11https://commons.apache.org/proper/commons-io/
12https://mvnrepository.com/artifact/org.apache.xmlgraphics/batik-util
13https://github.com/pgjdbc/pgjdbc
14https://mvnrepository.com/artifact/com.impossibl.pgjdbc-ng/pgjdbc-ng

C. Experimental environment

All experiments were conducted in an Intel Core machine
(i7-2670QM), called System#1, with 4 processors (2.20GHz)
running Ubuntu Linux (version 16.04 LTS, kernel 4.4.0-
112-generic) with 16GB of DDR3 1600MHz memory, and
Java(TM) SE Runtime Environment, version 1.8.0-151.

All experiments were performed with no other load on the
OS (except the OS processes). We measure energy consump-
tion through the jRAPL [20] library. This library works as
an interface to the MSR (Machine-Specific Register) module,
which is available to Intel architectures that support RAPL
(Running Average Power Limit). RAPL stores data regarding
power usage, which can afterwards be accessed through the
MSR module. Using jRAPL, Java programmers can use a
simple method call to gather power dissipation data (P ,
measured in watts) over time (t, measured in seconds). Energy
consumption is then calculated as E = P × t.

We also took particular care to mitigate noise that could
interfere in the results [1], [11]. We performed each benchmark
10 times. Since it requires some time to the Just-In-Time (JIT)
compiler to identify the hot code and perform optimizations,
we discarded the first three executions of the benchmarks. The
data reported throughout this work is the average of the seven
remaining executions. Moreover, since the garbage collector
and the heap size could influence in our experiments, we fixed
them accordingly to mitigate potential variations. In particular,
we used the parallel garbage collector (-XX:+UseParallelGC).
The heap size was fixed at 261 MB, minimum (-Xms), and
4,183 MB, maximum (-Xmx). No other JVM options were
employed.

Replication Package All data created in this study are
available for replication and reproduction purposes at: https:
//doi.org/10.5281/zenodo.3253349.

III. RESULTS

RQ1: Energy consumption behavior of the Java I/O APIs

Figure 1 summarizes the results for this research question.
The bars represent energy consumption data, whereas the lines
represent power dissipation. The overall energy consumption is
the sum of CPU, UNCORE (parts of CPU that do not include
processors, such as caches and interconnectors), and DRAM
individual energy consumption. Figure 1-(a) shows the Java
I/O APIs that implements input operations, while Figure 1-(b)
shows Java I/O APIs that implements output ones. The first
remarkable observation from this figure is that energy behavior
of the Java I/O APIs varies greatly. Generally speaking, input
operations consume more energy than output operations (on
average: 96 joules vs 0.80 joules, respectively).
Java I/O APIs that perform input operations. In terms of
input operations, the micro-benchmark PushbackInputStream

is the most energy consuming one (492 joules consumed),
followed by FileInputStream (474 joules). Analyzing the
PushbackInputStream implementation, we perceived that this
Java I/O API adds a flag in the InputStream that marks bytes
as “not read”. Such bytes are included back in the buffer to

(a) Input (b) Output

P
B
IS FI
S

R
A
F

S
C
N

P
B
R FR

LN
R
B
R

C
A
R
B
IS

B
A
IS S
R

R
FA
L

B
R
FL
R
FL

0

100

101

102

103

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

P
o
w

e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

FW P
S
T

B
W

P
W

FO
S

B
O
S

S
W

C
A
W

B
A
O
S0

100

101

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

Fig. 1: Energy consumption behavior of Java I/O APIs. Energy data is presented in a logarithmic scale. For the figure
on the left, PBIS stands for PushbackInputStream, FIS stands for FileInputStream, RAF stands for RadomAccessFile,
SCN stands for Scanner, PBR stands for PushbackReader, FR stands for FileReader, LNR stands for LineNumberReader,
BR stands for BufferedReader, CAR stands for CharArrayReader, BIS stands for BufferedInputStream, BAIS stands
for ByteArrayInputStream, SR stands for StringReader, RFAL stands for Files.readAllLines, BRFL stands for
Files.newBufferedReader, and RFL stands for Files.lines. For the figure on the right, FW stands for FileWriter, PST
stands for PrintStream, BW stands for BufferedWriter, PW stands for PrintWriter, FOS stands for FileOutputStream,
BOS stands for BufferedOutputStream, SW stands for StringWriter, CAW stands for CharArrayWriter, BAOS stands for
ByteArrayOutputStream.

be read again. However, before reading the bytes, this Java
I/O API also checks whether the stream is still open using
the ensureOpen() method. This repetitive operation has the
potential to be the source of this high energy consumption.

Interestingly, according to our query made at BOA [10],
FileInputStream is heavily used in open source projects
(2,823 OSS projects employ this Java I/O API). On the
other hand, the Files micro-benchmark, which could act
as a potential replacement for FileInputStream, is the
one with the least energy consumption, when performing
with its lines method (1,86 joules). Similar energy con-
sumption was found when performing with other meth-
ods such as Files.newBufferedReader (1,90 joules) and
Files.readAllLines (1,97 joules). In general, classes that
exhibited greater energy consumption did so because their
memory usage was more intensive (and therefore consumed
more energy) than the other classes. In addition, meth-
ods from the Files class, which is part of the java.nio

package, regularly consumed less energy than counterparts
from the java.io package. Files.newBufferedReader and
Files.readAllLines can be partially justified due to the fact
that the latter uses the former in its implementation, adding
to it additional behavior, such as including the read lines in
a List<String> object. Furthermore, a careful reader would
observe that the method Files.newBufferedReader shares
a similar name to the class BufferedReader, although its
energy behavior is slightly different. To better understand these
differences, we studied the source code of these classes. We
believe this happens because the Files.newBufferedReader

method uses a different InputStream object provided by

the java.nio.file.FileSystemProvider class. On the other
hand, the BufferedReader class, specifically for this micro-
benchmark, uses the java.io.FileReader as an instance of
the InputStream class.

Java I/O APIs that perform output operations. Regard-
ing the Java I/O APIs that perform output operations, the
FileWriter class was the most inefficient one (1,55 joules
consumed), followed by PrintStream (1,30 joules), and
PrintWriter (1,29 joules). This behavior is particularly due to
the way FileWriter, in particular, writes chars to file. Before
writing the chars, they pass through an encoding process.
The encode could change depending on the chosen charset.
The code snippet presented in Figure 2 describes the use of
the encoder object inside the implWrite() method (which is
called by the write() method).

void implWrite(char[] v1, int v2, int v3) {

// instance the character buffer in ’v4’

while(v4.hasRemaining()) {

// perform the character encode

v5 = encoder.encode(v4, bb, false);

// write data

} }

Fig. 2: A code snippet of the StreamEncoder class, used by
the FileWriter class.

The PrintStream and the PrintWriter, on the other
hand, work as wrappers of the BufferedWriter class, adding
to it additional features such as efficient writing of sin-

gle characters, arrays, and strings. This behavior might ex-
plain the similar energy behavior along these Java I/O APIs
(i.e., PrintStream, PrintWriter, and BufferedWriter). The
ByteArrayOutputStream class, on the other hand, is the
benchmark that performed the best, in terms of energy effi-
ciency (0,18 joules). In this particular benchmark, all data is
stored in the main memory, therefore, it avoids the well-known
costly disk operations (e.g., seek time [38]).

To further substantiate our findings, we performed the same
experiments but now varying the data size (from 1mb, 10mb,
to 20mb). The energy variation of the experiments was rather
small (no standard deviation was greater than 0.2 Joule).
Figure 3 shows the results of the variation, using seven last
samples of the 20mb configuration.

P
IS FI
S

R
A
L

S
C
N

P
B
R FR

LN
R

B
R

C
A
R

B
IS

B
A
IS S
R

R
FA

L
B
R
FL

R
FL

0

50

100

150

200

250

300

E
n
e
rg
y
 C

o
n
su

m
p
ti

o
n
 (

Jo
u
le

s)

(a) Input.

FW P
S
T

B
W

P
W

FO
S

B
O
S

S
W

C
A
W

B
A
O
S0.0

0.2

0.4

0.6

0.8

1.0

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

(b) Output.

Fig. 3: Experiments with the data size fixed at 20mb.

RQ2: Does refactoring play a role?
In this research question we aimed to understand whether

refactoring could play a role at improving the energy consump-
tion of (macro-) benchmarks that perform I/O operations. For
each one of the (macro-) benchmarks, we manually refactored
their code base, using the following steps:

1) We identified the instances of Java I/O APIs in vari-
ables/methods within the workload classes;

2) We refactored these instances to other Java I/O APIs that
inherit from the same parent class;

3) We made sure that the refactored source code did not
introduce any compiler or runtime error;

4) We benchmarked the refactored code following the same
methodology depicted at Section II-C

Overall, we performed 22 manual refactorings. As we
shall see in Table II, not all (macro-) benchmarks could be
refactored to use other Java I/O APIs. In some cases (e.g.,
when experimenting with XALAN), we could only refactored
to one other Java I/O API. Since there is a semantic gap
between the Java I/O APIs that do not inherit from the same
parent, we opted not to bridge this gap using an ad hoc
solution, which could be error-prone and omission-prone. We
then only refactored instances of Java I/O APIs that share the
same parent class. The only exception to this rule was with
the COMMONS-IO, which in the refactored code favors the
“line-by-line” approach. Table II summarizes the results after
applying the refactorings our benchmarks.

Refactoring the optimized benchmarks. As aforementioned
at Section II-B2, not all benchmarks leverage input and output

operations at the same workload. For instance, the FASTA
benchmark does not employ any input operations, therefore, its
input columns are all empty (represented with a é symbol).
Similarly, the K-NUCLEOTIDE benchmark does not perform
output operations. Among the optimized benchmarks, only
REVERSE-COMPLEMENT performs both input and output op-
erations. The FASTA benchmark employed an OutputStream,
then we refactored its code to use a FileOutputStream,
a ByteArrayOutputStream, a BufferedOutputStream, and a
PrintStream. In the default implementation, this benchmark
used the System.out class to write the output in the terminal.
As we can see in the Table II, the best energy consumption was
achieved using the default implementation. According to the
official documentation15, this System.out class “corresponds
to display output or another output destination specified by
the host environment or user.” Interestingly, the variable out

is an instance of a PrintStream. However, differently than
the PrintStream implementation, the output channel used
by System.out is always open, which reduces the effort of
opening and closing it.

On the other hand, the ByteArrayOutputStream API had
the worst energy behavior, consuming 36% more energy
than the default implementation. As aforementioned, the
ByteArrayOutputStream deals with data in the main mem-
ory (avoiding delays related to disk access). For this par-
ticular benchmark, all changes made through the refactor-
ings increased energy usage. Interestingly, even the class
BufferedOutputStream, that was among the best ones in
our micro-benchmark experiments, performed worse than the
default implementation. Indeed, the BufferedOutputStream

class introduced additional features aimed to further reduce
disk access. According to the documentation, using this class,
“an application can write bytes to the underlying output stream
without necessarily causing a call to the underlying system
for each byte written.” However, this only happens when the
buffer is full, which might not be case of the workload of this
benchmark.

Moreover, when looking at the K-NUCLEOTIDE bench-
mark, we could observed that, again, the default imple-
mentation performed better than the alternative Java I/O
APIs. In this case, the default implementation leverage
the BufferedOutputStream class, an well-known and well-
optimized version of OutputStream. Most interestingly, how-
ever, was the result obtained when performing with the
Scanner class, which increased energy consumption by 60%.
We observed that this particular class performs extra tasks,
such as breaking its entry into tokens using a delimiter.
The resulting tokens can then be converted to values of
different types using utility methods (e.g., Scanner.nextByte
or Scanner.nextDouble.

Finally, the REVERSE-COMPLEMENT benchmark performs
both input and output operations. Its default implementation
leverages the FileInputStream class for performing input
operations, and the FileOutputStream class, for output ones.

15https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#out

TABLE II: Benchmarks energy consumption data. FA stands for FASTA, KN stands for K-NUCLEOTIDE, and RC stands
for REVERSE-COMPLEMENT. / indicates the default implementation. é indicates that the benchmark does not employ
input/output operations. � indicates that the refactoring could not be made. Green cells indicate energy improvements, whilst
red cells indicate otherwise.

optimized benchmarks macro-benchmarks
Classes FA KN RC XALAN FOP BATIK COMMONS-IO PGJDBC
FileInputStream é � / / é é � é
BufferedInputStream é � +16.31% -17.19% é é � é
BufferedReader é / � � é é / é
LineNumberReader é -7.52% � � é é -16.47% é
Files.readAllLines é -0.87% � � é é -9.5% é
Scanner é +60.77% � � é é +486.28% é

PrintStream +19.13% é +15.24% -7.96% +48.38% -3.68% é +811.41%
FileOutputStream +29.13% é / / +73.91% / é �
DataOutputStream � é � � � � é +883.22%
ByteArrayOutputStream +36.24% é � � � � é �
BufferedOutputStream +19.23% é +25.96% -11.71% / -3.1% é /
System.out / é � � � � é �

For this set of experiment, we only changed one class per
execution (i.e., when experiment with different input APIs, the
output one was not modified). The most surprisingly finding
in this experiment was the good performance of PrintStream.
However, in the particular case of REVERSE-COMPLEMENT
and FASTA, these two benchmarks heavily employ concurrent
programming techniques. According to related work, when
concurrency is in the game, energy behavior is much more
complex [31], [18]. Moreover, these two benchmarks employ
their own buffering techniques, which are more sophisticated
than the implementation available in Java I/O APIs such
as PrintStream. In particular, all characters printed by a
PrintStream are converted into bytes using its own default
character encoding. This converting process (similar to what
the Scanner class does) might the be root cause of the
PrintStream energy behavior.

These initial results provide evidence that small changes
in Java I/O APIs might have the potential of improving the
energy consumption of benchmarks already optimized for
performance. The relatively small effort placed in these tasks
further substantiate the need of additional research along these
lines. In the following we revisit the experiments, but now
considering the macro-benchmarks.

Refactoring the macro-benchmarks. Among the macro-
benchmarks FOP, BATIK, and PGJDBC do not employ input
operations (similarly, COMMONS-IO does not employ output
operations). For these macro-benchmarks, our refactorings
are restricted to the counterpart operations. We performed
11 refactorings on the macro-benchmarks. We were able to
improve the energy consumption in six instances of these
refactorings: with XALAN when performing input and output
operations, with BATIK when performing output operations,
and with COMMONS-IO, when performing input operations.
The right hand side of Table II summarizes the results.
Generally speaking, the refactorings that changed the Java
I/O API to one instance of the Buffered family of classes
improved the energy consumption of the macro-benchmarks
(up to 17%, when performing with XALAN).

We did not achieve any energy saving when performing with
FOP and PGJDBC (both perform output operations). In these
two particular macro-benchmarks, the default implementation
employed the BufferedOutputStream, which had a good en-
ergy behavior in the micro-benchmarks. Moreover, one inter-
esting observation is that the refactoring to the PrintStream,
a perceived energy inefficient Java I/O API, had the potential
of increasing energy usage in more than 811% on the PGJDBC
macro-benchmark, and an increase of 48% on FOP.

IV. FURTHER ANALYSIS

In this section we asked (and provided answers to) addi-
tional questions regarding the use of Java I/O APIs.

A. Does the buffer size matter?

Since the buffer size is one readily available tuning knob of
the Java I/O APIs, we now conduct additional experiments
varying over it. In this particular experiment, we replayed
the KN experiment, using the BufferedInputStream Java
I/O API, now varying buffer sizes from 8kb (default) to
10,000 KB. The file input was fixed on 256 MB. Figure 4
on the left shows the results. As one can see, there is a
very small variation when performing the experiments with
different buffer sizes (the best energy consumption was 19.67
joules, whereas the worst was 20.94 joules). Afterwards, we
conducted another round of experiments, but now without the
use of a constructor (the chart on the right Figure 4 used
the constructor (InputStream inputFile, int bufferSize)

to instantiate the BufferedInputStream object). The result
without the constructor is present at the left of Figure 4. As we
can see, the constructor places an energy toll in the experiment.
Without the constructor, the best energy consumption was
0.04 joules (505 times lower than with the constructor). More
interestingly, is the fact that we could now perceive that
there is, indeed, an energy variation when using different
buffer sizes. However, this variation is rather small and often
shadowed when the constructor is employed. When studying
the source code of the constructor, we perceived that it is

responsible for opening the input file, which consumes much
more energy than the task itself.

8
 K

B

1
0

0
0

 K
B

2
0

0
0

 K
B

3
0

0
0

 K
B

4
0

0
0

 M
B

5
0

0
0

 M
B

6
0

0
0

 K
B

7
0

0
0

 K
B

8
0

0
0

 K
B

9
0

0
0

 K
B

1
0

0
0

0
 K

B
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
n
e
rg

y
 C

o
n
su

m
p
ti

o
n
 (

Jo
u

le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

P
o

w
e

r
(W

a
tt

s)

CPU

UNCORE

DRAM

(a) With constructor.
8
 K
B

1
0
0
0
 K
B

2
0
0
0
 K
B

3
0
0
0
 K
B

4
0
0
0
 M
B

5
0
0
0
 M
B

6
0
0
0
 K
B

7
0
0
0
 K
B

8
0
0
0
 K
B

9
0
0
0
 K
B

1
0
0
0
0
 K
B

0

5

10

15

20

25

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

14

P
o
w

e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

(b) Without constructor.

Fig. 4: Additional experiments with the buffer size. Figure on
the left shows the results while using a constructor, whereas
figure on the right does not use a constructor.

B. Does the input size matter?

For this set of experiments, we varied the input size of the
DaCapo benchmarks. As aforementioned in Section II-B3, the
DaCapo benchmarks provide mechanism to vary the workload,
including small, default, and large options. The results varying
the workload are present at Figure 5. For each workload, we
present up to four bars, which represents the results using
different Java I/O APIs. These results corroborate with our
initial results presented at Table II. That is, overall, the Java
I/O API that performed the best in the default workload was
also the one that performed the best in the other workloads.

C. Are the energy improvements statistically significant?

Here we moved one step further to understand whether
the energy savings are also statistically significant. In this
set of experiments, in order to gather more samples to test,
we replayed the refactorings that yield energy savings (the
green cells at Table II), but now iterating over them 100
times (instead of 10). We then used the non-parametric Mann-
Whitney-Wilcoxon (MWW) test [39] to test whether the
difference among the two transformed versions is statistically
significant, and the Cliff’s Delta [7], a non-parametric effect
size measure for ordinal values, to measure the effect size. We
interpret effect sizes e as e < 0.1 very small, 0.1 ≤ e < 0.3
small, 0.3 ≤ e < 0.5 medium, 0.5 ≤ e < 0.7 large,
0.7 ≤ e < 0.9 very large, and 0.9 ≤ e < 1 nearly perfect.
Table III shows the results. As we can see, all the refactorings
are statistically significant (p ≤ 0.05). Still, all of them had a
negative effect size, which indicates that the refactored version
indeed consumed less energy.

1) Are the energy improvements platform-independent?:
The results reported so far in this study are based on a
single machine, System#1. To better exploit the external
validity of our results, we replayed the DaCapo experiments
in another machine (called System#2), with the following
configuration: an Intel Xeon machine (ES-2660) with 40
processors (2.20GHz) running Ubuntu Linux (version 14.04
LTS, 3.19.0-25-generic kernel) with 251GB of main memory,
and Java (TM) SE Runtime Environment, version 1.8.0-151.

TABLE III: Statistical Analysis.

Benchmark Class Effect Size p-value
KNUCLEOTIDE Files.readAllLines -0.5496296 (large) 1.926e-10
KNUCLEOTIDE LineNumberReader -0.93 (large) < 2.2e-16
XALAN BufferedInputStream -1 (large) < 2.2e-16
XALAN BufferedOutputStream -1 (large) < 2.2e-16
XALAN PrintStream -0.8282716 (large) < 2.2e-16
BATIK BufferedOutputStream -0.2032099 (small) 0.01861
BATIK PrintStream -0.1982716 (small) 0.02168
COMMONS-IO LineNumberReader -0.351358 (medium) 4.707e-05
COMMONS-IO Files.readAllLines -0.3996296 (medium) 3.673e-06

We decided to focus only on the DaCapo macro-benchmarks
because they are less prone to performance variations and are
more likely to mimic a real user case experience. Table IV
shows the results. As we can see, the most energy-efficient
Java I/O APIs found at System#1 were not always the ones
found at System#2. Only in the FOP benchmark that the
results coincided for the two environments. It is interesting
to note in System#1, the classes BufferesInputStrem and
BufferedOutputStream appear as the most energy efficient
choices. Although the same does not hold true for System#2,
we observed that these classes (BufferesInputStream and
BufferedOutputStream) are, indeed, the second most energy-
efficient in the XALAN and BATIK benchmarks, with very
minor energy variations.

TABLE IV: Comparing the energy results obtained in Sys-
tem#1 and System#2. Green cells indicate that the result
matches, whilst Red indicate that does not matches.

System#1 System#2
SMALL DEFAULT LARGE SMALL DEFAULT LARGE

XALAN BIS BIS BIS FIS FIS FIS

FOP FOS BOS BOS BOS BOS BOS

BATIK PST PST BOS FOS FOS FOS

D. Are the most used Java I/O APIs the most energy efficient?

One interesting observation of this study is that not always
the most popular Java I/O API is also the most energy efficient
one. Consider the BufferedReader class, which is the most
used Java I/O API in the OSS stored by BOA [10]: it was
employed in 12,441 OSS projects. However, in terms of energy
consumption, BufferedReader performs just ordinarialy: it is
the 9th best energy behavior among the 15 Java I/O APIs
that perform input operations. Similarly, the PrintWriter

class is the second most used Java I/O API (employed in
10,501 projects), but has the fourth worst energy consumption
among classes that implement writing operations. As another
example, the Scanner class, which is fourth most used Java
I/O API (7,970 OSS projects employ it), has the fourth
worst energy consumption. Indeed, when we refactored the
optimized and macro-benchmarks to use Scanner, we noted
an energy drain of up to 486%.

1) How many source code lines are modified in the refac-
toring transformations?: Overall, our refactorings changed 3–
5 lines of code. However, in same cases which the Java I/O
APIs share the same parent class, the refactoring changed just

FOP
SMALL DEFAULT LARGE

B
O
S

FO
S

P
S
T0

1

2

3

4

5

6

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

25

30

35

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

B
O
S

FO
S

P
S
T0

2

4

6

8

10

12

14

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

25

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

B
O
S

FO
S

P
S
T0

2

4

6

8

10

12

14

16

18

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

14

16

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

BATIK

FO
S

B
O
S

P
S
T0

1

2

3

4

5

6

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM
FO

S

B
O
S

P
S
T0

5

10

15

20

25

30

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

FO
S

B
O
S

P
S
T0

10

20

30

40

50

60

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

P
o
w

e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

XALAN

FI
S

B
IS

FO
S

B
O
S0

1

2

3

4

5

6

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

25

30

35

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

FI
S

B
IS

FO
S

B
O
S0

5

10

15

20

25

30

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

5

10

15

20

25

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

FI
S

B
IS

FO
S

B
O
S0

50

100

150

200

250

E
n
e
rg
y
 C
o
n
su
m
p
ti
o
n
 (
Jo
u
le
s)

DRAM UNCORE CPU

0

2

4

6

8

10

12

14

16

P
o
w
e
r
(W

a
tt
s)

CPU

UNCORE

DRAM

Fig. 5: Energy behavior when varying the workload of the DaCapo macro-benchmarks.

a single line of code. The Listing 1 shows a representative
example.

static byte[] read(InputStream is) {

- BufferedReader in = new

- BufferedReader(new InputStreamReader(is,

+ LineNumberReader in = new

+ LineNumberReader(new InputStreamReader(is,

StandardCharsets.ISO_8859_1));

while ((line = in.readLine()) != null) {

// do work

}

// perform read operations

return toCodes(bytes, position);

}

Listing 1: A snippet of the Knucleotide before and after the
refactoring to LineNumberReader.

V. LIMITATIONS AND THREATS TO VALIDITY

First, this work is limited to Java classes that reside in the
java.io package. This package contains classes that imple-
ment I/O operation by default. However, other classes exist
in other packages, as well as in third-party software libraries.
Although we manually added other classes, we certainly did
not explore all possible Java I/O APIs. Second, although we
conducted additional experiments with some “tuning knobs”,
such as the buffer size and the input size, some Java I/O APIs
have constructors with extensive configurations. Similarly, we
did not explore concurrency characteristics of the benchmarks
and Java I/O APIs. Experimenting with other configurations is
a combinatorial problem, and can be the subject of follow up
works (e.g., treating energy consumption as an optimization
problem). Another limitation is regarding to the use of the
BAOS Java I/O API. This Java I/O API reads data from the
main memory, instead of the disk, which is how the other Java
I/O APIs do. This behavior made BAOS very energy efficient,

when compared to the other Java I/O APIs. However, when
data is in the disk, one should use BAOS with other Java I/O
API, which may increase its energy consumption.

Third, we are limited by our selection of micro-, opti-
mized, and macro-benchmarks. Nonetheless, our corpus spans
a wide spectrum of benchmarks, from simple input/output
operations, to benchmarks already optimized for performance,
to macro-benchmarks used in daily computer programming
tasks. Fourth, we performed source code modifications in
the optimized and macro-benchmarks. One concern that one
may raise is whether our modifications could impact on
the correctness of the benchmarks. To mitigate this concern,
we manually compared the outputs generated by the default
implementations and the ones generated by our modifications,
and they were all the same. However, a thoroughly analysis
on this regard is left for future work.

Fifth, we conducted our experiments following experimental
systems research guidelines (e.g., [1]). As a consequence, our
environment might not represent a traditional developer work-
station, which often has several running process in the CPUs.

0 2 4 6 8 10
0

5

10

15

20

25

E
n
e
rg

ia
 (
Jo

u
le

s)

DRAM UNCORE CPU

0

2

4

6

8

10

12
P
o
tê

n
ci

a
 (
W

a
tt

s)

CPU
UNCORE
DRAM

Fig. 6: Energy variation
of 10 execution for the
Scanner benchmark.

Finally, one may argue that our
approach for averaging the last
seven execution of the benchmarks
would be sufficient to draw re-
liable conclusions. This threshold
was chosen based on a comprehen-
sive related work [31]. However,
Figure 6 provides additional light
on this matter. In this figure, we
present the energy consumption of
the 10 executions of the Scanner

benchmark. As one can see, the
energy consumption roughly plateau in the last executions.

VI. RELATED WORK

Most of the existing software empirical research has focused
on analyzing the relationship between individual characteris-
tics of an application and energy consumption. Examples of
such characteristics include data structures [8], [13], [23], VM
services [5], cloud offloading [14], code obfuscation [36], and
design patterns [34], [15]. Such research serves as a guideline
for future energy-aware application programmers.

Lima et al. [18] analyzed Haskell’s thread-management
constructs. The authors observed that by replacing uses of
Haskell’s default thread primitive, forkIO, by an alternative,
forkOn, that binds the created thread to a specific processor
while requiring modifications to a single line of code per use of
forkIO, exhibited lower energy consumption in most of the ex-
periments. Pathak et al. [26] categorized energy bugs through
analyzing the posts from four online forums. They produced a
comprehensive taxonomy ranging from battery problems, SIM
card problems, OS configuration problems, to no-sleep bugs.
Another study by Pathak et al. [27] presented an investigation
aiming to understand the root causes for energy consumption
problems in mobile applications. Linares-Vasquez et al. [19]
investigated Android API usage patterns that can potentially

consume high energy consumption. The authors observed that
while some anomalous energy consumption is unavoidable,
some can be avoided by using certain categories of Android
APIs and patterns. Oliveira et al. [24] looked at the energy
footprint of different programming languages used to develop
Android applications. The results showed a hybrid approach
(i.e., using more than one programming language to develop
an app) have the potential of increasing energy efficiency. In
some scenarios, small modifications (less than 10% of the lines
of code of an application) can result in significant reduction
in energy consumption.

There are several works that focus on the energy consump-
tion of Java collections. Pinto et al [32] compared the energy
consumption of thread safe and non-thread safe collections.
Hassan et al [12] presented an empirical study over 17
collections, experimented with six applications (general pur-
poses libraries and including mobile apps). In terms of tools,
Pereira and colleagues [28] proposed a tool called jStanley
that automatically finds collections that could be replaced by
other in other to improve their energy usage. More recently,
Oliveira [25] presented CT+, a tool that statically analyses col-
lections usage and suggests energy efficient recommendations.
This tool was experimented with 40 different collections.

These studies share a common finding: simple changes can
reduce energy consumption considerably. In our work, we
focus on Java I/O APIs, which is an direction that has been
so far little explored. Moreover, our findings corroborate with
the literature in the sense that refactorings that perform minor
modifications can yield relevant energy savings.

VII. CONCLUSIONS

In this work we conducted an extensive energy categoriza-
tion of 22 Java classes that implement I/O operations. After
an initial understanding of the energy landscapce of Java I/O
APIs, we then refactored optimized and macro-benchmarks
in order to investigate whether we could achieve energy
improvements by altering between Java I/O APIs. Among our
findings, we observed that the energy behavior of Java I/O
APIs varies greatly (and not always a very popular Java I/O
API is also the most energy efficient one). In another round
of experiments, we refactored 22 instances of Java I/O APIs
used in optimized and macro-benchmarks. These refactorings
taught us two important lessons: first, we could indeed improve
energy consumption of non-trivial working systems by chang-
ing few lines of Java I/O APIs code; second, not always the
Java I/O API that yield energy savings in one benchmark will
also lead to energy savings in another benchmark. More study
is still needed to better comprehend the specific scenarios and
limitations of our proposed transformations.

For future work we plan to replay the experiments in a
mobile platform. We also plan to extend the set of Java I/O
APIs, covering eventual third-party IO APIs. Finally, based on
our findings, we plan to create tools that could help developers
(1) to detect which Java I/O API they should use or (2) to
propose automatic refactorings to green Java I/O API.

Acknowledgments. This research was partially funded by
CNPq/Brazil (304755/2014-1, 406308/2016-0, 465614/2014-
0) and FACEPE/Brazil (APQ- 0839-1.03/14, 0388-1.03/14,
0592-1.03/15).

REFERENCES

[1] E. Barrett, C. F. Bolz-Tereick, R. Killick, S. Mount, and L. Tratt. Virtual
machine warmup blows hot and cold. Proc. ACM Program. Lang.,
1(OOPSLA):52:1–52:27, Oct. 2017.

[2] T. Bartenstein and Y. D. Liu. Green streams for data-intensive software.
In 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, pages 532–541, 2013.

[3] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The dacapo benchmarks: Java benchmarking development and analysis.
In Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, pages 169–190, 2006.

[4] A. Canino, Y. D. Liu, and H. Masuhara. Stochastic energy optimization
for mobile GPS applications. In Proceedings of the 2018 ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, pages 703–713,
2018.

[5] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The yin and
yang of power and performance for asymmetric hardware and managed
software. In Proceedings of the 39th Annual International Symposium
on Computer Architecture, ISCA ’12, pages 225–236, 2012.

[6] S. A. Chowdhury, S. D. Nardo, A. Hindle, and Z. M. J. Jiang. An
exploratory study on assessing the energy impact of logging on android
applications. Empirical Software Engineering, 23(3):1422–1456, 2018.

[7] N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin, 114(3):494–509, Nov. 1993.

[8] E. G. Daylight, T. Fermentel, C. Ykman-Couvreur, and F. Catthoor.
Incorporating energy efficient data structures into modular software
implementations for internet-based embedded systems. In Proceedings
of the 3rd International Workshop on Software and Performance, WOSP
’02, pages 134–141, 2002.

[9] D. Dig and R. Johnson. How do apis evolve? a story of
refactoring: Research articles. J. Softw. Maint. Evol., 18(2):83–107, Mar.
2006.

[10] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories.
In ICSE, pages 422–431, 2013.

[11] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java
performance evaluation. In OOPSLA, pages 57–76, 2007.

[12] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle.
Energy profiles of java collections classes. In ICSE, pages 225–236,
2016.

[13] N. Hunt, P. S. Sandhu, and L. Ceze. Characterizing the performance
and energy efficiency of lock-free data structures. In Proceedings of the
2011 15th Workshop on Interaction Between Compilers and Computer
Architectures, INTERACT ’11, pages 63–70, 2011.

[14] Y. Kwon and E. Tilevich. Reducing the energy consumption of mobile
applications behind the scenes. In ICSM, pages 170–179, 2013.

[15] D. Li and W. G. J. Halfond. An investigation into energy-saving
programming practices for android smartphone app development. In
Proceedings of the 3rd International Workshop on Green and Sustain-
able Software, GREENS 2014, pages 46–53, 2014.

[16] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating source
line level energy information for android applications. In International
Symposium on Software Testing and Analysis, ISSTA ’13, Lugano,
Switzerland, July 15-20, 2013, pages 78–89, 2013.

[17] D. Li, A. H. Tran, and W. G. J. Halfond. Making web applications
more energy efficient for OLED smartphones. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pages 527–538, 2014.

[18] L. G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, and J. P.
Fernandes. Haskell in green land: Analyzing the energy behavior of a
purely functional language. In SANER, pages 517–528, 2016.

[19] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk. Mining energy-greedy api usage
patterns in android apps: An empirical study. In MSR, pages 2–11,
2014.

[20] K. Liu, G. Pinto, and Y. D. Liu. Data-oriented characterization of
application-level energy optimization. In Fundamental Approaches to
Software Engineering - 18th International Conference, FASE 2015, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
pages 316–331, 2015.

[21] Y. Lyu, J. Gui, M. Wan, and W. G. J. Halfond. An empirical study of
local database usage in android applications. In 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2017,
Shanghai, China, September 17-22, 2017, pages 444–455, 2017.

[22] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause. An empirical study of practitioners’ perspec-
tives on green software engineering. In ICSE, pages 237–248, 2016.

[23] I. Manotas, L. Pollock, and J. Clause. Seeds: A software engineer’s
energy-optimization decision support framework. In ICSE, pages 503–
514, 2014.

[24] W. Oliveira, R. Oliveira, and F. Castor. A study on the energy
consumption of android app development approaches. In Proceedings
of the 14th International Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 42–52,
2017.

[25] W. Oliveira, R. Oliveira, F. Castor, B. Fernandes, and G. Pinto. Recom-
mending energy-efficient java collections. In Proceedings of the 16th
International Conference on Mining Software Repositories, MSR 2019,
26-27 May 2019, Montreal, Canada., pages 160–170, 2019.

[26] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging
on smartphones: A first look at energy bugs in mobile devices. In
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 5:1–5:6, 2011.

[27] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy spent inside
my app?: Fine grained energy accounting on smartphones with eprof.
In EuroSys, pages 29–42, 2012.

[28] R. Pereira, P. Simão, J. Cunha, and J. Saraiva. jstanley: placing a green
thumb on java collections. In International Conference on Automated
Software Engineering, ASE 2018, Montpellier, pages 856–859, 2018.

[29] G. Pinto, A. Canino, F. Castor, G. H. Xu, and Y. D. Liu. Understanding
and overcoming parallelism bottlenecks in forkjoin applications. In
Proceedings of the 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2017, Urbana, IL, USA, October
30 - November 03, 2017, pages 765–775, 2017.

[30] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. In 11th Working Conference on Mining Software
Repositories, MSR 2014, Proceedings, May 31 - June 1, 2014, Hyder-
abad, India, pages 22–31, 2014.

[31] G. Pinto, F. Castor, and Y. D. Liu. Understanding energy behaviors of
thread management constructs. In OOPSLA, pages 345–360, 2014.

[32] G. Pinto, K. Liu, F. Castor, and Y. D. Liu. A comprehensive study
on the energy efficiency of java’s thread-safe collections. In 2016
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2016, Raleigh, NC, USA, October 2-7, 2016, pages 20–31, 2016.

[33] S. Sabin. Smartphone owners prefer simple fea-
tures like battery life, durability, camera quality.
https://morningconsult.com/2018/11/15/smartphone-owners-prefer-
simple-features-like-battery-life-durability-camera-quality/, November
2018. Accessed: 2019-02-10.

[34] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. E. Kiamilev, L. L.
Pollock, and K. Winbladh. Initial explorations on design pattern energy
usage. In GREENS, pages 55–61, 2012.

[35] C. Sahin, L. L. Pollock, and J. Clause. How do code refactorings
affect energy usage? In 2014 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, Torino,
Italy, September 18-19, 2014, page 36, 2014.

[36] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and J. Clause. How
does code obfuscation impact energy usage? In 30th IEEE International
Conference on Software Maintenance and Evolution, Victoria, BC,
Canada, September 29 - October 3, 2014, pages 131–140, 2014.

[37] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J.
Halfond, and J. Clause. How does code obfuscation impact energy
usage? Journal of Software: Evolution and Process, 28(7):565–588,
2016.

[38] S. VanDeBogart, C. Frost, and E. Kohler. Reducing seek overhead with
application-directed prefetching. In Proceedings of the 2009 Conference
on USENIX Annual Technical Conference, USENIX’09, pages 24–24,
Berkeley, CA, USA, 2009. USENIX Association.

[39] D. Wilks. Statistical Methods in the Atmospheric Sciences. Academic
Press. Academic Press, 2011.

